skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Fengwei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> Cosmologically stable, light particles that came into thermal contact with the Standard Model in the early universe may persist today as a form of hot dark matter. For relics with masses in the eV range, their role in structure formation depends critically on their mass. We trace the evolution of such hot relics and derive their density profiles around cold dark matter halos, introducing a framework for theirindirect detection. Applying this framework to axions — a natural candidate for a particle that can reach thermal equilibrium with the Standard Model in the early universe and capable of decaying into two photons — we establish stringent limits on the axion-photon couplinggaγusing current observations of dwarf galaxies, the Milky Way halo, and galaxy clusters. Our results set new bounds on hot axions in the$$ \mathcal{O}\left(1-10\right) $$ O 1 − 10 eV range. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  2. There is a large literature of numerical methods for phase field models from materials science. The prototype models are the Allen-Cahn and Cahn-Hilliard equa- tions. We present four benchmark problems for these equations, with numerical results validated using several computational methods with different spatial and temporal discretizations. Our goal is to provide the scientific community with a reliable reference point for assessing the accuracy and reliability of future software for this important class of problem. 
    more » « less